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MODELLING OF WAVE PROPAGATION IN THE NEARSHORE 
REGION USING THE MILD SLOPE EQUATION WITH 

GMRES-BASED ITERATIVE SOLVERS 
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Department of Civil Engineering, Imperial College. London SA‘7 2BU UK 

SUMMARY 

The mild slope equation in its linear and non-linear forms is used for the modelling of nearshore wave 
propagation. The finite difference method is used to descretize the governing elliptic equations and the resulting 
system of equations is solved using GMRES-based iterative method. The original GMRES solution technique of 
S a d  and Schultz is not directly applicable to the present case owing to the complex coefficient matrix. The 
simpler GMRES algorithm of Walker and Zhou is used as the core solver, making the upper Hessenberg 
factorization unneccessary when solving the least squares problem. Several preconditioning-based acceleration 
strategies are tested and the results show that the GMRES-based iteration scheme performs very well and leads to 
monotonic convergence for all the test-cases considered. 

UY W O R M  GMRES; mild slope equation; iterative solvers 

1. INTRODUCTION 

Bcrkhoff’s mild slope equation’ has resulted in significant progress in terms of wave prediction in the 
nearshore region. The original equation is applicable to linear waves propagating over variable sea bed 
geometry with ‘mild’ slopes, but weak non-linearity can also be empirically incorporated* and the 
equation has also been shown to give acceptable results for steep  slope^.^ However, the equation 
manifests itself in an elliptic form which can be realistically solved only over a limited area in plan 
owing to computational time and storage limitations. In order to deal with problems associated with 
large areas in plan, some simplifications are usually made which compromise the physics, such as the 
parabolic approach which imposes restrictions on the angle of wave propagation and in addition ignores 
wave reflections. Another solution strategy involves using a transient form of the mild slope equation, 
which leads to hyperbolic formulations in which a steady state solution is sought. Hyperbolic 
formulations require small AI in order to satisfy constraints based on the Courant number. Such 
formulations are often characterized by a deterioration of the results with time due to numerical errors 
being introduced by the inexact boundary conditions. 

Recent developments pertaining to the iterative solution of linear systems of equations enable 
efficient solution of elliptic problems similar to that typically described by the mild slope equation. 
Conjugate-gradient-based methods usually produce rapid convergence to the solution of a linear group 
of equations and are also economical in terms of computer storage because they generally require only a 
matrix-vector product to be kept in memory rather than the complete coefficient matnx. With regard to 
the mild slope equation this attribute enables solutions to be obtained for large areas in plan‘ without 
any trade-off in terms of the description of the physics of the problem in hand. 
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In this paper an iterative solution of the mild slope equation in its linear form (a Helmholtz-type 
equation) is described. Also, a non-linear form of the same equation is solved which uses coarser 
discretizations, thus making it possible to deal with even larger areas in plan. The core elliptic solver is 
similar to the s-GMRES solution technique as proposed by Walker and Zhou.' The reason for using the 
s-GMRES method instead of the original GMRES of Saad and S c h u l d  is that in the s-GMRES scheme 
the upper Hessenberg factorization is no longer required, thus making it much simpler to deal with a 
matrix with complex coefficients. The adopted scheme is fbrther extended using ideas from the 
FGMRES scheme' as well as the GMRESR scheme* and it also incorporates a range of preconditioners, 
including a simple preconditioner based on ILU factorization. 

The paper is organized as follows. The governing equations are presented and discussed first. The 
mild equation is discussed in its original form and also in a transformed form as proposed by Li and 
Anastasiou.' This is followed by the presentation of the solution method based on the s-GMRES 
algorithm. Various preconditioning schemes, including ILU-GMRES, FGMRES and GMRESR, are 
also presented and discussed. Two test-cases are examined in Section 4. The first is Berkhoffs shoal 
case, for which results from other numerical models are available as well as experimental data. The 
second test-case is a harbour resonance problem, for which model results can be compared with an 
analytical solution. It is shown that the proposed solution method compares favourably with hitherto 
available numerical schemes. 

2. GOVERNKG EQUATIONS AND DISCRETIZATION 

2.1. Governing Equations 

The governing equation is the mild slope equation as proposed by Berkhoff.' 

V(CC,Vf#J) + cc,4 = 0, (1) 

where c is the wave celerity, cg is the wave group velocity and 4 is the wave potential. This equation can 
be written as a Helmholtz equation" 

V24 + kz4  = 0, (2) 

where 

with k the wave number. 
The Helmholtz equation has the following characteristics. 

1. The coefficients are complex, so the matrix derived from the numerical discretization is also 

2. The real parts of some eigenvalues are negative and, moreover, some of the eigenvalues are small. 

3. The matrix is non-Hermitian owing to the fact that the boundary conditions are usually of the 

4. The finite difference discretization provides a poor resolution of the group velocity. Thus better 

Using a transformation suggested by Radder," 

complex. 

These characteristics generally lead to slow convergence of CG method." 

Neumann type. 

resolution is required in order to achieve reliable results. 

4 = exp(+)* (4) 
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the following non-linear equation can be derived, which was used as the modelling equation in the 
multigrid model of Li and Anasta~iou:~ 

V2$ + V@. V+ + k,‘ = 0. ( 5 )  

It should be noted that the above transformation is not valid at wave-crossing points, as pointed out by 
Radder,” where numerical instabilities might arise. A numerical dissipation mechanism, such as that 
caused by an upwind scheme, may be required at such points. 

2.2. Numerical Discretization 

The linear equation can be easily discretized using a central finite difference scheme as 

The discretized equations from a group of linear equations and applicable iterative solvers are described 
in Section 3. 

The non-linear equation ( 5 )  is discretized as 

where 

$ i + l , j  - $ i - t , j  

2Ax ’ 
F, = 

*. . - * .  
L / + I  I , / - I  Fy = 

2AY 
(9) 

and 6 is the upwind operator in the x- or y-direction, depending on the local wave direction calculated at 
the previous iteration step. 

2.3. Boundary Conditions 

boundary the following equation is used: 
The boundary conditions are first-order radiation boundary conditions. For the offshore dnving 

where 4i is the incident wave at the boundary. 
At the downstream boundary the radiation boundary condition used reads 

In practice, such first-order boundary conditions often produce significant unwanted numerical 
reflections. In order to deal with this problem, either second-order schemes may be used” or some 
empirical coefficients can be introduced, The latter approach is used in the present scheme and the 
radiation boundary condition is simply written as 
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where the coefficient x is obtained from a pure wave refraction calculation. The radiation boundary 
condition is discretized as 

3. ITERATIVE SOLVERS 

The GMRES scheme proposed by Saad and Schultz6 has become a very popular iterative method for the 
solution of linear systems of equations. The basic method is to evaluate a Krylov subspace using a 
modified Gram-Schmid process and the residue is minimized in this subspace. It is well established that 
full GMRES is optimal in terms of matrix-vector product count. GMRES is usually truncated to step m 
(denoted as GMRES(rn)) because of (i) the quadratic increase in operation count of the modified Gram- 
Schmidt process and (ii) the loss of orthogonality due to the accumulation of round-off errors. 

Many variants of the GMRES(m) method exist. The traditional simple preconditioning strategies 
such as ILU and SSOR are certainly applicable. However, more complicated strategies have hitherto 
been proposed. In particular, the preconditioner can be constructed in a different form for each iteration 
step, making use of available information on the current residue and the eigenvalue distribution given by 
the Arnoldi process at the previous iteration step. Such approaches produce variants of GMRES(m) such 
as FGMRES (flexible GMRES),' GMRESR (GMRES residue)' and ET-p-GMRES (eigenvalue- 
transferred preconditioning GMRES).I4 The preconditioner in the FGMRES technique can be a direct 
solver or even an iterative one, including GMRES itself, in order to accelerate convergence. The pre- 
conditioner in GMRESR uses a low-rank update of the original matrix in order to accelerate 
convergence. A typical realization of GEMRESR involves using the GMRES(m) scheme as a 
preconditioner to the CGR(k) scheme. The ET-p-GMRES scheme uses a series of low-rank 
transformations to transform the already approximated sparse eigenvalues so that they lie in the 
vicinity of point 1 in the complex plane. This last method seems the most promising in that the 
preconditioncr is tailor-made for the problem and both the negative eigenvalues and small eigenvalues 
which are critical to the convergence of a CG-like method may be moved to more favourable positions in 
the complex plane. However, the number of required low-rank transformations may be large, the vectors 
of these low-rank transformations have to be stored for sparse matrices and this increases considerably 
both memory and multiplication count requirements as the number of transformations increases. 
Therefore we choose three typical preconditioning strategies, namely ILU, FGMRES and GMRESR, 
although other direct strategies or iterative ones such as the multigrid method can also be easily 
incorporated. 

As discussed in the previous section, the linear system of equations which must be solved involves 
complex coefficients and the direct application of the GMRES method will not satisfy the orthogonality 
requirements. I t  should be noted, however, that the QR factorization is no longer necessary for one 
variant of GMRES, namely GMRES proposed by Walker and Zhou.' This scheme was originally 
devised to same some computational steps for a problem with a matrix of real coefficients and is adapted 
here to solve the complex matrix corresponding to thc present problem, as explained in the following 
subsection. 

3. I .  The s-GMRES scheme 

The s-GMRES scheme is formed by shifting the Arnoldi process to start with Ar,, instead of starting 
with ro which is the original Krylov subspace construction suggested by Saad and Schultz.' The matrix 
thus formed is not an upper Hessengerg matrix but an upper triangular matrix. The elimination can be 
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directly applied to the upper triangular matrix in order to obtain the minimized vector. In the original 
GMRES scheme the QR factorization is usually realized via Givens rotations. However, for a matrix 
with complex coefficients the Givens rotations often do not lead to the minimization of the residue and 
they are not unitary. It is much simpler to use the s-GMRES scheme which does not require this QR 
factorization. 

The s-GMRES scheme can be formulated as follows, noting that owing to the complex matrix some 
steps are different from those in the original algorithm proposed by Walker and Zhou.' Furthermore, the 
steps of the present algorithm are organized so as to enable incorporation of the FGMRES method as a 
preconditioner. 

Algorithm. - 
Start '0 = b -Axo,  B = Ilroll2. t-0 = ro/B 
Arnold process 
f o r j  = 1,. . , m do 

0 vJ = AvJ-,(v1 = Ar,) 
0 F o r i = l ,  . . . , j -  1, 

E = E; - h l . J . .  . v-i 
Compute hJ,J = Ilv,lh 

' 1 . J  = ('J? ' 1 )  

J J  

'J = 'JlhJ.J 
PJ = ( r 7  ' j )  

r = r - p  J ' 'J 
Solve H, y, = P 
where P = ( P I , P Z , .  . -P,,,) 
Form the approximate solution; 
x, = x o  + v, y ,  
Restart, 
if satisfied, stop else xo = x,, goto step 1 

T 

T Here 1 1 ~ ; . 1 1 ~  denotes the 2-norm of the vector vj (see e.g. Reference 15); that is, if uj = ( q , ,  q 2 , .  . . q n )  , 
then 

The algorithm for a real coefficient matrix is discussed in detail by Walker and Zhou,' who have shown 
that it is equivalent to the general GMRES method with some additional small savings in terms of 
computational run-time due to the fact that the QR factorization is no longer required. 

When applying the s-GMRES to the mild slope equation, all the coefficients in the matrix are scaled 
using the corresponding diagonal coefficient in order to eliminate possible small eigenvalues caused by 
the nature of the imposed boundary conditions.' 

3.2. The Preconditioners 

For the purposes of the problem at hand, three preconditioners are implemented, namely ILU, 
FGMRES (GMRES-GMRES) and GMRESR (GMRES-GCR). 

' 3.2.1. The ILU Preconditionel: The incomplete LD-'U as proposed by Van de Vorst" is 
constructed in the following way. 

1. Diag (L)  = diag( U) = D. 
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2. The off-diagonal parts of L and U are equal to the corresponding parts of A. 
3. Diag (LD-' U )  = diag(A). 

In this way, only the extra vector is required in order to produce the required preconditioner. 
If the area of interest is rectangular, the preconditioner is even simpler, since the matrix A for the case 

of the mild slope equation is a pentadiagonal matrix with ul, I , .  . ~ q 5  being the non-zero element of row 
i. For this case the coefficient mahix has the property 

where m is the distance between q 5  and q 3  in the matrix A. 

advantage of the current residue available in thc way both FGMRES and GMRESR do. 
The ILU preconditioning approach uses the same matrix in every iteration but does not take 

3.2.2. The FGMRES Preconditioner The FGMRES scheme proposed by Saad' is a very flexible 
scheme from the point of view of incorporating preconditioners. It is possible to incoporate any iterative 
scheme in the solver as a preconditioner. The equation to solve is 

AM-I(Mx) = b. (16) 

As in any CG-like mcthod, only the matrix-vector product is required. Whenever AM is required, 
Mz = u is solved first and then the matrix A is applied to z. Instead of using the exact Mas  a traditional 
preconditioner requires, the approximate solution of Mz = u can be used. This effectively takes 
advantage of the current residue when the new preconditioner is constructed, which leads to a more 
efficient algorithm. The algorithm in the present implementation of s-GMRES reads as follows 

Algorithm 
I .  Start ro = b - Axo, P = llrollz 
2 .  Arnoldi process 

f o r j =  1,  . . . ,  m, do 
0 zJ = M - I v ~ . . ,  (zI = M-'ro)  

w = A z j  
0 For i = 1, .  . . ,J - 1, 

hI,j = (w. u l )  
v . = w - h .  ..v; 

J 1 .  J 
0 Compute hi, = 11 v, 1) 

cJ = w/hj., 

r = r - p  .v. 
pj = ( r ,  u,) 

I 1  
3. Solve H,  y ,  = P 

T where P = ( pI . pz.. . . , p,)  
Form the approximate solution; 
x, = x o  + Z d ,  

if satisfied, stop else xo = x,, goto step 1. 
4. Restart. 

The preconditioner is incorporated in step 2, where M-I is an approximation of the matrix A - ' I .  In 
fact, M - '  is never calculated, because only the vector product zJ = M - I U , - ~  is required. This can be 
derived by any approximate method. An important advantage of the FGMRES method is that M-I can 
be the same as that arising from an implementation of ILU or MILU, but in addition (and more 
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importantly) it can be different at different iteration steps. In fact, the present FGMRES uses s-GMRES 
as its preconditioner. The equation Az, = 2)- I is solved using the s-GMRES method to give an 
approximate solution for zj. 

I t  is clear that in the FGMRES context the above-mentioned ILU method can be simply incorporated 
in a more general preconditioning approach, although more memory might be required than in the case 
of using solely the ILU technique. However, the FGMRES algorithm makes it very easy to switch 
between different preconditioners. 

3.2.3. The GMRESR Preconditioner. Another effective preconditioning strategy was proposed by 
Van de Vorst and Vuik.8 By investigating the low-rank transformation of A, GMRES is used as a 
preconditioner. A typical realization of this approach is the GMRES-GCR scheme, which is often 
referred to simply as GMRESR. 

Algorithm. 
1. S t a r t r o = h - A x o , k = - l  
2. Iteration 

f o r k =  1 ,  ..., m d o  
I uk = M -  rk 

0 Ck =Auk 
F o r i = O ,  . . . ,  k -  1, 
a = (ck, ci) 
ck = ck - “ci 
Uk = uk - 

0 Compute ck = Ck/IICk112 

Uk uk = - 
llCk112 

Form the approximate solution; 
xk+l = x k  + ukcyrk 
rk+l = rk - CkCFrk 

3. Restart, 

Here M-’ is the approximation of the matrix Ki. The calculation is realized by the s-GMRES 
method, solving approximately Mx = rk and returning the vector q ,  just like the procedure used in the 
FGMRES scheme. 

if satisfied, stop else xo = x,, goto step 1. 

3.2.4. Convergence criterion. The convergence criterion used when solving the mild slope equation 
is ba5ed on the residue being defined as 

The reason for using the squares of the 2-norms is to enable direct comparison with hitherto available 
solutions of the mild slope equation based on elliptic solvers. 

3.3. The non-liner solver 

Non-linear solvers using GMRES have been theoretically investigated by Brown and Saad.I8 The 
iteration is simply carried out according to the classical Newton method. 
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The non-linear algorithm is as follows. 

1.  start x = xo 
2. Iteration n = 0, I ,  2,.  . .until convergence 

0 Solve J(xn)Gxn = -F(xn) 
0 Xn.+ ]  = x, + Gx,. 

Here J is the system Jacobian and F(x)  represents the systems of equations. The solution process is 
carried out at two levels, the first corresponding to the solution of the system of linear equations and the 
second to the non-linear updating process. Therefore two separate convergence criteria must be defined: 
linear residue 

and non-linear residue 

4. TEST-CASES 

Two typical cases are presented in this section. The first is Berkhoffs shoal. For this case both the linear 
and non-linear models are tested. The second test-case relates to wave reflection within a harbour, where 
only the linear model is tested since crossing waves exist. 

4.1. Berkhofk shoal 

The previously discussed schemes are applied to Berkhoff's shoal, for which experimental test results 
are well documented. Results are compared with experimental data. 

The lay-out of the shoal is shown in Figure 1.  The shoal was built on a mild slope. The incident waves 
have a period of 1 s and are incident normally to the offshore boundary. The numerical model was run 
on a grid of 220 x 200 with 0.1 m grid spacing. The co-ordinate system used is such that the centrc of 
the shoal is at .x = 10.0 m , y  -- 11.0 m. The results from the linear model are shown in Figure 2 and 
those from the non-linear model are shown in Figure 3.  Various transects are shown in Figures 4(apl(d) 
at y = 12, 16,20 m and x = 10 m respectively, together with the experimental data as prescribed by 
Berkhoff t al." The numerical results are in good agreement with the experimental data and the 
observed trend is in very close agreement with those from hithertoo available linear models. 

The solution of the non-linear form of the govemining equation produces similar results, but a much 
larger grid spacing can be used (0.4 m is used here). Results (plane plot, Figure 3, and the transects 
plotted together with the linear form results in Figure 4) are similar to those from the linear model as 
well as the experimental data, but some discrepancies appear possibly owing to three reasons: (i) the grid 
spacing is large, so the boundary conditions introduce larger errors; (ii) the use of the upwind 
dissipation scheme; (iii) the inaccuracy introduced by the non-linear formulation at wave-crossing 
points as pointed out by Radder." It should be noted that this non-linear form of the equation is only a 
transformation of the linear Helmholtz equation and that it still describes linear waves. The present 
model results are in good agreement with the results from the multigrid model using the same non-linear 
form of the equation as presented by Li and Anastasiou.' 
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T=l .(k + 

2 5  5 0  7 5  100 I 2 5  150 175 200 (,,,) 

Figure I .  (ieometry of Rerkhoff's expenment 

In order to clarify the results from the non-linear model, a further test was carried out. The grid 
spacing was reduced to 0.2 m. The results tend to approach the linear model results in the region near 
the shoal as can be seen in Figures 4(a), 4(b) and 4(d), but hrther downstream the results remain 
unchanged as shown in Figure 4(c). In this region the results are severely affected by the wave crossing, 
where the non-linear formulation becomes inaccurate as shown by Radder.I2 
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12 5 - 
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5 0  - 

8 
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I 

Figure 2. Contour plot of computed results of linear model 
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Figure 3. Contour plot of computed results of non-linear model 
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Figure 4. Comparison of relative wave height over four transects 
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Figure 5 .  Lay-out for harbour resonance simulation 

4.2. Wave reflections within a harbour 

In order to test the reflection characteristics of the code, a harbour case for which theoretical results 
are available is tested. The grid lay-out is very similar to that of Panchang et ~ 1 . ~  as shown in Figure 5 .  
The resonance at the centre of the back wall of the harbour is shown in Figure 6, together with the 
theoretical results of Lee.” Close agreement is reached for two resonance peaks. 

4.3. Convergence 

The convergence curves in terms of multiplication counts for various schemes for Berkhoffs shoal 
are shown in Figure 7. The number of multiplications is used as the criterion, since either the total 
number of iterations or the matrix-vector product count cannot reveal the full extent of the 

I I I I I I I I I I 
0.0 05 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

KL 

Figure 6. Wave height comparison for harbour resonance. -, Theoretical 0, modelling results 
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Figure 7.  Comparisons of convergence of various schemes 

computational load associated with each scheme. The Arnoldi iteration number m for the various 
schemes was adjusted to that they all had approximately equal computational memory requirements. 
The s-GMRES scheme used m = 15 and so did the ILU-GMRES scheme. The FGMRES scheme used 
m = 10 at the outer iterations and m = 5 at the inner iterations. CMRESR used m = 6 at the innter 
GMRES iterations and m = 6 at the outer GCR iterations. 

It can be seen that plain s-GMRES give good convergence, but the preconditioner considerably 
accelerates the convergence rate. The ILU, FGMRES and GMRESR preconditioners perform in a very 
similar way. All present models perform favourably compared with other available published results. 
The preconditioned CG method applied to the normal equations as presented by Panchang et used 
more than 2000 global iterations, with each iteration requiring approximately 27N (N is the total number 
of grid points) multiplications. Thus the total multiplication count for this case was 2.376 x 10'. The 
GCG method of Liz' requires more than 2300 global iterations to reach the same convergence and 
within each iteration the multiplication count is 2 1 N. Thus the total multiplication count is 2.125 x lo9. 
It should be noted that GCG could be accelerated if equivalent memory to the present GMRES(m) were 
to be utilized which would enable GCG(m) to be used. However, it has bcen demonstrated by Saad and 
Schultz6 that GMRES still outperforms GCR(m) in terms of efficiency. 

In order to show the monotonic convergence of the present schemes. Berkhoff's shoal case was run 
down to machine accuracy ( 1  0- 1 6 )  for the linear model. The curve is shown in Figure 8. I t  can be seen 
that monotonic convergence is indeed achieved. 

The convergence of the non-linear scheme is plotted in Figure 9, which shows the convergence of 
both the linear and non-linear residues. For these tests GMRES(m) with rn = 5 was used. 

In Figure 10 the iteration count of ILU-GMRES for the harbour resonance problem is given. For 
different frequencies the iteration number count can be very different and so can the calculation time. As 
expected the twin peaks in the curve of iteration counts closely follow those of the resonance curve 
(Figure 6). For these tests the residue limit was set as lo-''. 
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Figure 8. Convergence of ILU-GMRES 

5 .  CONCLUSIONS 

Models of iterative solutions of the mild slope equation implementing GMRES schemes have been 
developed and tested. The algorithm implementing the s-GMRES scheme shows good convergence. 
The s-GMRES method effectively avoids the upper Hessenberg factorization for the complex matrix 
arising from the present governing equation. Two well-known cases of nearshore wave propagation are 
tested and the results are favourable compared with available theoretical, numerical or experimental 
data. The rate of convergence of s-GMRES is fiu-ther accelerated by various preconditioning strategies 
such as ILU, FGMRES and GMRESR. Results show that the preconditioned models, in particular ILU 
and FGMRES, perform much better than s-GMRES for the cases considered. 

\ 
\ 

0- \ 

a 
-3- 

-7 4 
-8 1 I I I I I 1 I I I I 

0 5 10 15 20 25 30 35 40 45 50 
Global iteration number 

Figure 9. Convergence of non-lineaer GMRES 
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Figure 10. Performance of ILU-GMRES for harbour resonance calculations 

APPENDIX 

eigenvalue-transferred preconditioning GMRES14 
flexible GMRES’ 
generalized conjugate gradient residue scheme” 
generalized minimum residue scheme6 
m-step-tmncated GMRES6 
GMRES residue’ 
incomplete lower-upper factorization 
simpler GMRES” 
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